Contents

Highlights ... 1

Introduction .. 2

Section 1: National and Regional Estimates 4

Section 2: Major Drug Categories 13

Appendix A: Statistical Methodology 16

Appendix B: Participating and Reporting Forensic Laboratories .. 20

Appendix C: NFLIS Benefits and Limitations 21

Public Domain Notice and Obtaining Copies of This Publication 22

Special NFLIS Announcement

Drug Category Estimates

This publication marks an important change in the drug category results presented in Section 2.

In prior publications, Section 2 presented data based on counts, not estimates, of reports that only represented those laboratories that provided data during the reference period. Using the National Estimates Based on All Reports (NEAR) methodology, Section 2 in this publication, as well as future midyear and annual reports, presents estimates based on drug counts by drug category. Section 2’s drug category results presented in this and future publications should not be compared with the results presented in previous years.
Highlights

■ From January 2013 through June 2013, an estimated 455,124 distinct drug cases were submitted to State and local laboratories in the United States and analyzed by September 30, 2013. From these cases, an estimated 770,851 drug reports were identified.

■ Cannabis/THC was the most frequently reported drug (240,935), followed by cocaine (119,233), methamphetamine (100,045), and heroin (74,049). The four most frequently reported drugs accounted for 69% of all drug reports.

■ Nationally, dramatic increases in reports of oxycodone, hydrocodone, and alprazolam occurred from 2002 to 2010, followed by decreases from 2011 to 2013. The upward trend for buprenorphine was similar, but occurred a few years later. Clonazepam reports showed a linear increasing trend since 2001. Amphetamine reports decreased slightly from 2001 to 2004, but increased since then.

■ Regionally, oxycodone and hydrocodone reports for all regions showed S-shaped trends, with dramatic increases generally occurring from 2002 to 2010, followed by decreases from 2011 to 2013. For alprazolam and clonazepam, all regions showed increasing linear trends, except in the South. For buprenorphine and amphetamine, all regional trends curved upward.

■ Approximately 68% of narcotic analgesic reports were for oxycodone and hydrocodone. Alprazolam accounted for about 50% of tranquilizer and depressant reports. Approximately 84% of phenethylamines were for methamphetamine, and 65% of synthetic cannabinoids were for XLR11.

■ For cannabis/THC reports, the Midwest and South showed linear decreasing trends, while in the West and Northeast the trend decreased sharply from 2009 to 2013. Cocaine reports showed decreasing trends across all four regions since about 2004. Methamphetamine trends generally increased since about 2010, while MDMA trends decreased since about 2009. For heroin, all regions showed U-shaped trends, with the lowest point occurring in 2006 in the West, Northeast, and South, and in 2004 for the Midwest.

■ Cannabis/THC was the most frequently reported drug in the Midwest (40%), Northeast (34%), and South (29%), and methamphetamine was the most frequently reported drug in the West (38%).

■ Nationally, cocaine reports decreased between 2005 and 2013. Methamphetamine reports increased from 2001 through 2005, decreased through 2010, and increased since then. MDMA reports showed the opposite pattern in which they decreased from 2001 through 2003, increased from 2003 through 2009, and decreased from 2009 to 2013. Heroin reports decreased from 2001 to 2005, but increased since 2005. Cannabis/THC reports decreased between 2009 and 2013.
Introduction

The National Forensic Laboratory Information System (NFLIS) is a program of the Drug Enforcement Administration (DEA), Office of Diversion Control. NFLIS systematically collects results from drug analyses conducted by State and local forensic laboratories. These laboratories analyze controlled and noncontrolled substances secured in law enforcement operations across the country, making NFLIS an important resource for monitoring illicit drug use and trafficking, including the diversion of legally manufactured drugs into illegal markets. NFLIS includes information on the specific substance and the characteristics of drug evidence, such as purity, quantity, and drug combinations. These data are used to support drug scheduling efforts and to inform drug policy and drug enforcement initiatives.

Since its inception in September 1997, NFLIS has developed into a comprehensive information system that includes data from forensic laboratories that handle over 91% of the Nation’s nearly 1 million annual State and local drug analysis cases. Currently, 50 State systems and 96 local or municipal laboratories/laboratory systems participate in NFLIS, representing a total of 272 individual laboratories. In addition, the NFLIS database includes Federal data from DEA and U.S. Customs and Border Protection (CBP) laboratories. NFLIS will continue recruiting nonparticipating State and local laboratories and work to incorporate the remainder of Federal laboratories that perform drug chemistry analyses.

This publication presents results of drug cases submitted to State and local laboratories from January 2013 through June 2013 that were analyzed by September 30, 2013. Data from Federal laboratories are also included in this publication. All data presented in this publication include the first, second, and third drugs that were mentioned in laboratories’ reported drug items.

Section 1 of this publication provides national and regional estimates for the most frequently identified drugs. These estimates are based on the NEAR approach (National Estimates Based on All Reports). National and regional trends are also presented.

Section 2 presents results for major drug categories. Note that the 2013 NFLIS Midyear Report marks an important change in the results presented in Section 2. In previous years’ publications, Section 2 presented data based on counts, not estimates, of reports that only represented those laboratories that provided data during the reference period. In contrast to earlier NFLIS midyear (and annual) reports, Section 2 in this year’s publication presents estimates of specific drugs by drug category using the NEAR approach.

Appendix A provides details on the methodology used in preparing the data presented in this publication. Appendix B includes a list of NFLIS participating and reporting laboratories. The benefits and limitations of NFLIS are presented in Appendix C.
Participating Laboratories, by U.S. Census Region

- Reporting State laboratory system
- Participating State laboratory system (not yet reporting)
- State laboratory system not yet participating
- No State laboratory system
- Reporting local laboratory
- Participating local laboratory (not yet reporting)
Section 1: National and Regional Estimates

This section presents national and regional estimates of drugs submitted to State and local laboratories from January 2013 through June 2013 that were analyzed by September 30, 2013 (see Table 1.1). National and regional drug estimates include all drug reports (up to three) mentioned in laboratories’ reported drug items. National drug case estimates are also presented (see Table 1.2). In addition, semiannual trends are presented for selected drugs from January 2001 through June 2013.

The NEAR approach (National Estimates Based on All Reports) was used to produce estimates for the Nation and for the U.S. census regions. The NEAR approach uses all NFLIS reporting laboratories. Appendix A provides a detailed description of the methods used in preparing these estimates.

Table 1.1

<table>
<thead>
<tr>
<th>Drug</th>
<th>National</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Percent</td>
<td>Number</td>
<td>Percent</td>
<td>Number</td>
<td>Percent</td>
</tr>
<tr>
<td>Cannabis/THC</td>
<td>240,935</td>
<td>31.26%</td>
<td>26,672</td>
<td>20.75%</td>
<td>79,023</td>
<td>40.44%</td>
</tr>
<tr>
<td>Cocaine</td>
<td>119,323</td>
<td>15.48%</td>
<td>11,250</td>
<td>8.75%</td>
<td>22,359</td>
<td>11.44%</td>
</tr>
<tr>
<td>Methamphetamine</td>
<td>100,045</td>
<td>12.98%</td>
<td>48,618</td>
<td>37.83%</td>
<td>17,668</td>
<td>9.04%</td>
</tr>
<tr>
<td>Heroin</td>
<td>74,049</td>
<td>9.61%</td>
<td>11,770</td>
<td>9.16%</td>
<td>23,438</td>
<td>11.99%</td>
</tr>
<tr>
<td>Oxycodone</td>
<td>48,618</td>
<td>6.24%</td>
<td>22,359</td>
<td>11.44%</td>
<td>27,539</td>
<td>21.30%</td>
</tr>
<tr>
<td>Hydromorphone</td>
<td>48,618</td>
<td>6.24%</td>
<td>22,359</td>
<td>11.44%</td>
<td>27,539</td>
<td>21.30%</td>
</tr>
<tr>
<td>Buprenorphine</td>
<td>11,273</td>
<td>1.46%</td>
<td>1,002</td>
<td>0.78%</td>
<td>3,497</td>
<td>1.75%</td>
</tr>
<tr>
<td>Alprazolam</td>
<td>18,428</td>
<td>2.39%</td>
<td>1,261</td>
<td>0.98%</td>
<td>3,411</td>
<td>1.75%</td>
</tr>
<tr>
<td>XLR11</td>
<td>11,273</td>
<td>1.46%</td>
<td>1,002</td>
<td>0.78%</td>
<td>3,497</td>
<td>1.75%</td>
</tr>
<tr>
<td>Buprenorphine</td>
<td>11,273</td>
<td>1.46%</td>
<td>1,002</td>
<td>0.78%</td>
<td>3,497</td>
<td>1.75%</td>
</tr>
<tr>
<td>Methadone</td>
<td>3,539</td>
<td>0.46%</td>
<td>623</td>
<td>0.48%</td>
<td>669</td>
<td>0.34%</td>
</tr>
<tr>
<td>Noncontrolled, non-narcotic</td>
<td>2,984</td>
<td>0.39%</td>
<td>1,032</td>
<td>0.80%</td>
<td>0.00%</td>
<td>365</td>
</tr>
<tr>
<td>Diazepam</td>
<td>2,883</td>
<td>0.37%</td>
<td>408</td>
<td>0.32%</td>
<td>671</td>
<td>0.34%</td>
</tr>
<tr>
<td>Hydromorphone</td>
<td>2,883</td>
<td>0.37%</td>
<td>408</td>
<td>0.32%</td>
<td>671</td>
<td>0.34%</td>
</tr>
<tr>
<td>Phencyclidine (PCP)</td>
<td>2,550</td>
<td>0.33%</td>
<td>230</td>
<td>0.18%</td>
<td>447</td>
<td>0.23%</td>
</tr>
<tr>
<td>Pseudoephedrine</td>
<td>2,432</td>
<td>0.32%</td>
<td>33</td>
<td>0.03%</td>
<td>1,108</td>
<td>0.57%</td>
</tr>
<tr>
<td>MDMA</td>
<td>2,432</td>
<td>0.32%</td>
<td>33</td>
<td>0.03%</td>
<td>1,108</td>
<td>0.57%</td>
</tr>
<tr>
<td>Carisoprodol</td>
<td>2,249</td>
<td>0.29%</td>
<td>399</td>
<td>0.31%</td>
<td>218</td>
<td>0.11%</td>
</tr>
<tr>
<td>Psilocin/psilocin</td>
<td>2,136</td>
<td>0.28%</td>
<td>664</td>
<td>0.52%</td>
<td>639</td>
<td>0.33%</td>
</tr>
<tr>
<td>Codeine</td>
<td>1,628</td>
<td>0.21%</td>
<td>312</td>
<td>0.24%</td>
<td>367</td>
<td>0.19%</td>
</tr>
<tr>
<td>1-Benzylpiperazine (BZP)</td>
<td>1,615</td>
<td>0.21%</td>
<td>75</td>
<td>0.06%</td>
<td>741</td>
<td>0.38%</td>
</tr>
<tr>
<td>Methylenedihydromorphine</td>
<td>1,583</td>
<td>0.20%</td>
<td>184</td>
<td>0.14%</td>
<td>484</td>
<td>0.25%</td>
</tr>
</tbody>
</table>

XLR11=[1-(5-Fluoropentyl)-1H-indol-3-yl](2,2,3,3-tetramethylcyclopropyl)methanone
MDMA=3,4-Methylenedioxymethamphetamine

1 Sample n’s and 95% confidence intervals for all estimates are available on request.
2 As reported by NFLIS laboratories, with no specific drug name provided.
3 Includes items from a small number of laboratories that do not specify between pseudoephedrine and ephedrine.
4 Numbers and percentages may not sum to totals because of rounding.
National Case Estimates

Top 25 estimated number of drug-specific cases and their percentage of distinct cases, January 2013 through June 2013

<table>
<thead>
<tr>
<th>Drug</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannabis/THC</td>
<td>173,203</td>
<td>38.06%</td>
</tr>
<tr>
<td>Cocaine</td>
<td>94,079</td>
<td>20.67%</td>
</tr>
<tr>
<td>Methamphetamine</td>
<td>73,750</td>
<td>16.20%</td>
</tr>
<tr>
<td>Heroin</td>
<td>55,744</td>
<td>12.25%</td>
</tr>
<tr>
<td>Oxycodone</td>
<td>18,762</td>
<td>4.12%</td>
</tr>
<tr>
<td>Hydrocodone</td>
<td>15,884</td>
<td>3.49%</td>
</tr>
<tr>
<td>Alprazolam</td>
<td>15,103</td>
<td>3.32%</td>
</tr>
<tr>
<td>XLR11</td>
<td>6,801</td>
<td>1.49%</td>
</tr>
<tr>
<td>Buprenorphine</td>
<td>5,011</td>
<td>1.10%</td>
</tr>
<tr>
<td>Clonazepam</td>
<td>4,870</td>
<td>1.07%</td>
</tr>
<tr>
<td>Amphetamine</td>
<td>4,575</td>
<td>1.01%</td>
</tr>
<tr>
<td>Methylene</td>
<td>3,965</td>
<td>0.87%</td>
</tr>
<tr>
<td>Morphine</td>
<td>3,500</td>
<td>0.77%</td>
</tr>
<tr>
<td>Methadone</td>
<td>3,036</td>
<td>0.67%</td>
</tr>
<tr>
<td>Diazepam</td>
<td>2,570</td>
<td>0.56%</td>
</tr>
<tr>
<td>Phencyclidine (PCP)</td>
<td>2,345</td>
<td>0.52%</td>
</tr>
<tr>
<td>Hydromorphone</td>
<td>2,219</td>
<td>0.49%</td>
</tr>
<tr>
<td>Noncontrolled, non-narcotic</td>
<td>2,083</td>
<td>0.46%</td>
</tr>
<tr>
<td>Carisoprodol</td>
<td>1,961</td>
<td>0.43%</td>
</tr>
<tr>
<td>Psilocin/psilocin</td>
<td>1,773</td>
<td>0.39%</td>
</tr>
<tr>
<td>MDMA</td>
<td>1,646</td>
<td>0.36%</td>
</tr>
<tr>
<td>Pseudoephedrine</td>
<td>1,606</td>
<td>0.35%</td>
</tr>
<tr>
<td>Codeine</td>
<td>1,422</td>
<td>0.31%</td>
</tr>
<tr>
<td>Methylphenidate</td>
<td>1,132</td>
<td>0.25%</td>
</tr>
<tr>
<td>Tramadol</td>
<td>1,121</td>
<td>0.25%</td>
</tr>
</tbody>
</table>

Top 25 Total 498,162 109.46%

All Other Drugs 79,872 17.55%

Total All Drugs 578,034 127.01%

Drugs Reported by Federal Laboratories

The majority of drug reports presented in the section are from the DEA's System To Retrieve Information from Drug Evidence II (STRIDE). STRIDE reflects results of substance evidence from drug seizures, undercover drug buys, and other evidence analyzed at DEA laboratories located across the country. STRIDE includes results for drug cases submitted by DEA agents, other Federal law enforcement agencies, and select local police agencies. Although STRIDE captures both domestic and international drug cases, the results presented in this section describe only those drugs obtained within the United States. In addition to drug reports from STRIDE, reports from seven U.S. Customs and Border Protection (CBP) laboratories are also included.

Most Frequently Reported Drugs by Federal Laboratories

Number and percentage of drug reports submitted to laboratories from January 2013 through June 2013 and analyzed by September 30, 2013

<table>
<thead>
<tr>
<th>Drug</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cocaine</td>
<td>4,053</td>
<td>16.22%</td>
</tr>
<tr>
<td>Methamphetamine</td>
<td>3,834</td>
<td>15.34%</td>
</tr>
<tr>
<td>Cannabis/THC</td>
<td>3,277</td>
<td>13.11%</td>
</tr>
<tr>
<td>Heroin</td>
<td>2,224</td>
<td>8.90%</td>
</tr>
<tr>
<td>Oxycodone</td>
<td>482</td>
<td>1.93%</td>
</tr>
<tr>
<td>Methylone</td>
<td>265</td>
<td>1.06%</td>
</tr>
<tr>
<td>Phencyclidine (PCP)</td>
<td>192</td>
<td>0.77%</td>
</tr>
<tr>
<td>Testosterone</td>
<td>179</td>
<td>0.72%</td>
</tr>
<tr>
<td>3,4-Methylenedioxyamphetamine</td>
<td>165</td>
<td>0.66%</td>
</tr>
<tr>
<td>1-Piperidinocyclohexanecarbonitrile (PCC)</td>
<td>120</td>
<td>0.48%</td>
</tr>
</tbody>
</table>

All Other Drug Reports 10,201 40.82%

Total Drug Reports 24,992 100.00%

1 Federal drug reports in this table include 23,753 reports from DEA laboratories and 1,239 reports from U.S. Customs and Border Protection (CBP) laboratories.

2 Percentages may not sum to 100% because of rounding.

1 Federal drug reports in this table include 23,753 reports from DEA laboratories and 1,239 reports from U.S. Customs and Border Protection (CBP) laboratories.

2 Percentages may not sum to 100% because of rounding.

XLR11=[1-(5-Fluoropentyl)-1H-indol-3-yl](2,2,3,3-tetramethylcyclopropyl)methanone

MDMA=3,4-Methylenedioxyamphetamine

1 As reported by NFLIS laboratories, with no specific drug name provided.

2 Includes items from a small number of laboratories that do not specify between pseudoephedrine and ephedrine.

3 Numbers and percentages may not sum to totals because of rounding.

4 Multiple drugs can be reported within a single case, so the cumulative percentage exceeds 100%. The estimated national total of distinct case percentages is based on is 455,124 distinct cases submitted to State and local laboratories from January 2013 through June 2013 and analyzed by September 30, 2013.
The remainder of this section presents semiannual national and regional trends of selected drugs submitted to State and local laboratories during each six-month data reference period and analyzed within three months of the end of each six-month period. The trend analyses test the data for the presence of both linear and curved trends using statistical methods described in more detail in Appendix A. Curved trends are sometimes described as U-shaped (i.e., decreasing in earlier years and increasing in recent years) and S-shaped (i.e., two turns in the trend, roughly either increasing-decreasing-increasing or decreasing-increasing-decreasing). Estimates include all drug reports (up to three) identified among the NFLIS laboratories’ reported drug reports. Between the first half of 2001 and the first half of 2013, the total estimated number of drug reports decreased approximately 13%, from 887,939 to 770,851.

National prescription drug trends

Figures 1.1 and 1.2 present national trends for the estimated number of prescription drug reports that were identified as oxycodone, hydrocodone, alprazolam, clonazepam, buprenorphine, and amphetamine. Significant ($p < .05$) results include the following:

- Oxycodone, hydrocodone, alprazolam, and buprenorphine reports showed S-shaped trends. Dramatic increases in reports of oxycodone, hydrocodone, and alprazolam occurred from 2002 to 2010, followed by decreases from 2011 to 2013. The upward trend for buprenorphine was similar, but occurred a few years later, with dramatic increases occurring from 2005 to 2010, then slowing from 2011 to 2013.

* A dashed trend line indicates estimates did not meet the criteria for precision or reliability. See Appendix A for a more detailed methodology discussion.
Clonazepam reports showed a linear increasing trend since 2001.

Amphetamine reports decreased slightly from 2001 to 2004, but increased since 2004.

Significance tests were also performed on differences from the first half of 2012 to the first half of 2013 in order to identify more recent changes. Across these two periods, reports of oxycodone (from 27,053 to 23,854 reports), hydrocodone (from 21,901 to 18,834 reports), alprazolam (from 20,070 to 18,428 reports), and clonazepam (from 5,748 to 5,504 reports) decreased significantly ($p < .05$), while reports of amphetamine (from 4,984 to 5,544 reports) increased significantly.

Other national drug trends

Figures 1.3 and 1.4 present national trends for reports of cannabis/THC, cocaine, methamphetamine, heroin, and MDMA. Significant ($p < .05$) results include the following:

Cocaine reports decreased between 2005 and 2013.

Heroin reports showed a U-shaped trend in that they decreased from 2001 through 2005, but increased since 2005.

More recently, from the first half of 2012 to the first half of 2013, reports of cannabis/THC (from 272,615 to 240,935 reports), cocaine (from 155,476 to 119,323 reports), and MDMA (from 3,276 to 2,423 reports) decreased significantly, while reports of methamphetamine (from 88,865 to 100,045 reports) and heroin (from 65,510 to 74,049 reports) increased significantly ($p < .05$).

Regional prescription drug trends

Figures 1.5 through 1.10 show regional trends per 100,000 persons aged 15 or older for reports of oxycodone, hydrocodone, alprazolam, clonazepam, buprenorphine, and amphetamine from the first half of 2001 through the first half of 2013. These figures illustrate changes in prescription drugs reported over time, taking into account the population aged 15 or older within each U.S. census region. Significant ($p < .05$) trend results include the following:

- For oxycodone and hydrocodone, all regions showed S-shaped trends similar to the national trends for each drug. Dramatic increases generally occurred from 2002 to 2010, then reports decreased from 2011 to 2013.

- For alprazolam, the West region showed linear increasing trends. In the Midwest and Northeast regions, the rate of increase slowed since 2010. In the South region, the curve had a pronounced S-shape; instead of flattening out since 2010, the trend in the South region began curving downward in 2010.

- For clonazepam, the West, Midwest, and Northeast regions showed linear increasing trends. In the South region, the curve had an S-shape, showing a recent leveling off.

- For buprenorphine, all regions showed upward curving trends. In all regions except the West, the rate of increase slowed in recent years, especially since 2010. In the Northeast, the trend began to turn downward, due in part to a relatively low estimate in the first half of 2013.

- For amphetamine, all regions showed upward-curving trends, especially since 2007. The trend in the West region was less consistent and more U-shaped than the others, showing a decrease from 2001 to 2007.

More recently, from the first half of 2012 to the first half of 2013, oxycodone reports decreased significantly in all regions except the Midwest ($p < .05$), while hydrocodone reports decreased significantly in all regions except the West. Alprazolam decreased significantly in the West, Northeast, and South regions, but increased significantly in the Midwest. Clonazepam decreased significantly in the South. Buprenorphine increased significantly in the Midwest, but decreased significantly in the Northeast. Amphetamine increased significantly in the West and Midwest.

Figure 1.5 Regional trends in oxycodone reported per 100,000 persons aged 15 or older, January 2001–June 2013*

![Graph](image)

Note: U.S. Census 2013 population data by age were not available for this publication. Population data for 2013 were imputed.

* A dashed trend line indicates estimates did not meet the criteria for precision or reliability. See Appendix A for a more detailed methodology discussion.
Figure 1.6 Regional trends in hydrocodone reported per 100,000 persons aged 15 or older, January 2001–June 2013

Figure 1.7 Regional trends in alprazolam reported per 100,000 persons aged 15 or older, January 2001–June 2013*

Figure 1.8 Regional trends in clonazepam reported per 100,000 persons aged 15 or older, January 2001–June 2013

Note: U.S. Census 2013 population data by age were not available for this publication. Population data for 2013 were imputed.

* A dashed trend line indicates estimates did not meet the criteria for precision or reliability. See Appendix A for a more detailed methodology discussion.
Figure 1.9 Regional trends in buprenorphine reported per 100,000 persons aged 15 or older, January 2001–June 2013*

<table>
<thead>
<tr>
<th>Month</th>
<th>Midwest</th>
<th>Northeast</th>
<th>South</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan-Jun '01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul-Dec '01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan-Jun '02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul-Dec '02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan-Jun '03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul-Dec '03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan-Jun '04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul-Dec '04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan-Jun '05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul-Dec '05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan-Jun '06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul-Dec '06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan-Jun '07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul-Dec '07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan-Jun '08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul-Dec '08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan-Jun '09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul-Dec '09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan-Jun '10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul-Dec '10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan-Jun '11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul-Dec '11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan-Jun '12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul-Dec '12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan-Jun '13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1.10 Regional trends in amphetamine reported per 100,000 persons aged 15 or older, January 2001–June 2013

<table>
<thead>
<tr>
<th>Month</th>
<th>Midwest</th>
<th>Northeast</th>
<th>South</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan-Jun '01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul-Dec '01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan-Jun '02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul-Dec '02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan-Jun '03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul-Dec '03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan-Jun '04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul-Dec '04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan-Jun '05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul-Dec '05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan-Jun '06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul-Dec '06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan-Jun '07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul-Dec '07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan-Jun '08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul-Dec '08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan-Jun '09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul-Dec '09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan-Jun '10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul-Dec '10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan-Jun '11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul-Dec '11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan-Jun '12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul-Dec '12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan-Jun '13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note: U.S. Census 2013 population data by age were not available for this publication. Population data for 2013 were imputed.

*A dashed trend line indicates estimates did not meet the criteria for precision or reliability. See Appendix A for a more detailed methodology discussion.
Other regional drug trends

Figures 1.11 through 1.15 present regional trends per 100,000 persons aged 15 or older for cannabis/THC, cocaine, methamphetamine, heroin, and MDMA reports from the first half of 2001 through the first half of 2013. Significant ($p < .05$) trends include the following:

- For cannabis/THC reports, the Midwest and South regions showed linear decreasing trends. In the Northeast and West regions, the trends were S-shaped, showing sharp decreases since 2009.

- For cocaine, all four regions showed decreasing trends since about 2004. In the West and Midwest regions, the rate of decrease slowed since 2011.

- For methamphetamine and MDMA, the regional trends were all S-shaped as were the corresponding national trends. For methamphetamine, all regions showed increases since 2010. For MDMA, all regions showed decreases since 2009.

- For heroin, all regions showed U-shaped trends. The lowest point occurred in about 2006 for the West, Northeast, and South and in 2004 for the Midwest.

Between the first half of 2012 and the first half of 2013, cannabis/THC and cocaine decreased significantly in all regions ($p < .05$). Both methamphetamine and heroin increased significantly in the Midwest and Northeast; methamphetamine also increased significantly in the South. MDMA increased in the Midwest, but decreased in the other three regions.

Figure 1.11 Regional trends in cannabis/THC reported per 100,000 persons aged 15 or older, January 2001–June 2013

Figure 1.12 Regional trends in cocaine reported per 100,000 persons aged 15 or older, January 2001–June 2013

Note: U.S. Census 2013 population data by age were not available for this publication. Population data for 2013 were imputed.
Figure 1.13 Regional trends in methamphetamine reported per 100,000 persons aged 15 or older, January 2001–June 2013 *

Figure 1.14 Regional trends in heroin reported per 100,000 persons aged 15 or older, January 2001–June 2013

Figure 1.15 Regional trends in MDMA reported per 100,000 persons aged 15 or older, January 2001–June 2013 *

Note: U.S. Census 2013 population data by age were not available for this publication. Population data for 2013 were imputed.

* A dashed trend line indicates estimates did not meet the criteria for precision or reliability. See Appendix A for a more detailed methodology discussion.
Section 2: Major Drug Categories

Section 2 presents national and regional estimates of specific drugs by drug category using the NEAR approach (National Estimates Based on All Reports). This marks an important change from previous NFLIS publications in which counts, not estimates, were presented. Specifically, this section presents estimates of drug reports submitted to State and local laboratories from January 2013 through June 2013 that were analyzed by September 30, 2013. The first, second, and third drugs mentioned in laboratories’ drug items are included in the counts. Drug categories presented in this section include narcotic analgesics, tranquilizers and depressants, anabolic steroids, phenethylamines, and synthetic cannabinoids.

A total of 770,851 drug reports were submitted to State and local laboratories during this six-month reference period and analyzed by September 30, 2013.

Table 2.1
NARCOTIC ANALGESICS

<table>
<thead>
<tr>
<th>Narcotic Analgesic Reports</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxycodone</td>
<td>23,854</td>
<td>37.79%</td>
</tr>
<tr>
<td>Hydrocodone</td>
<td>18,834</td>
<td>29.84%</td>
</tr>
<tr>
<td>Buprenorphine</td>
<td>5,635</td>
<td>8.93%</td>
</tr>
<tr>
<td>Morphine</td>
<td>4,123</td>
<td>6.53%</td>
</tr>
<tr>
<td>Methadone</td>
<td>3,539</td>
<td>5.61%</td>
</tr>
<tr>
<td>Hydromorphone</td>
<td>2,600</td>
<td>4.12%</td>
</tr>
<tr>
<td>Codeine</td>
<td>1,628</td>
<td>2.58%</td>
</tr>
<tr>
<td>Tramadol</td>
<td>1,279</td>
<td>2.03%</td>
</tr>
<tr>
<td>Oxymorphone</td>
<td>823</td>
<td>1.30%</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>380</td>
<td>0.60%</td>
</tr>
<tr>
<td>Mitragynine</td>
<td>105</td>
<td>0.17%</td>
</tr>
<tr>
<td>Propoxyphene</td>
<td>105</td>
<td>0.17%</td>
</tr>
<tr>
<td>Dextropropoxyphene</td>
<td>66</td>
<td>0.10%</td>
</tr>
<tr>
<td>Meperidine</td>
<td>66</td>
<td>0.10%</td>
</tr>
<tr>
<td>Other narcotic analgesics</td>
<td>91</td>
<td>0.14%</td>
</tr>
<tr>
<td>Total Narcotic Analgesic Reports</td>
<td>63,127</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

Total Drug Reports 770,851

1 Includes drug reports submitted to laboratories from January 2013 through June 2013 that were analyzed by September 30, 2013.

2 Numbers and percentages may not sum to totals because of rounding.
Table 2.2 Tranquilizers and Depressants
Number and percentage of tranquilizer and depressant reports in the United States, January 2013–June 2013

<table>
<thead>
<tr>
<th>Tranquilizer and Depressant Reports</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alprazolam</td>
<td>18,428</td>
<td>50.36%</td>
</tr>
<tr>
<td>Clonazepam</td>
<td>5,504</td>
<td>15.04%</td>
</tr>
<tr>
<td>Diazepam</td>
<td>2,883</td>
<td>7.88%</td>
</tr>
<tr>
<td>Phencyclidine (PCP)</td>
<td>2,550</td>
<td>6.97%</td>
</tr>
<tr>
<td>Carisoprodol</td>
<td>2,249</td>
<td>6.15%</td>
</tr>
<tr>
<td>Lorazepam</td>
<td>1,134</td>
<td>3.10%</td>
</tr>
<tr>
<td>Zolpidem</td>
<td>1,033</td>
<td>2.82%</td>
</tr>
<tr>
<td>Ketamine</td>
<td>783</td>
<td>2.14%</td>
</tr>
<tr>
<td>Cyclobenzaprine</td>
<td>591</td>
<td>1.62%</td>
</tr>
<tr>
<td>Hydroxyzine</td>
<td>189</td>
<td>0.52%</td>
</tr>
<tr>
<td>Temazepam</td>
<td>171</td>
<td>0.47%</td>
</tr>
<tr>
<td>Butalbital</td>
<td>152</td>
<td>0.42%</td>
</tr>
<tr>
<td>Pregabalin</td>
<td>141</td>
<td>0.39%</td>
</tr>
<tr>
<td>Prochlorperazine</td>
<td>100</td>
<td>0.27%</td>
</tr>
<tr>
<td>Etizolam</td>
<td>62</td>
<td>0.17%</td>
</tr>
<tr>
<td>Other tranquilizers and depressants</td>
<td>618</td>
<td>1.69%</td>
</tr>
</tbody>
</table>

Total Tranquilizer and Depressant Reports | 36,588 | 100.00% |
Total Drug Reports | 770,851|

Table 2.3 Anabolic Steroids
Number and percentage of anabolic steroid reports in the United States, January 2013–June 2013

<table>
<thead>
<tr>
<th>Anabolic Steroid Reports</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testosterone</td>
<td>859</td>
<td>51.11%</td>
</tr>
<tr>
<td>Methandrostenolone</td>
<td>140</td>
<td>8.39%</td>
</tr>
<tr>
<td>Stanozolol</td>
<td>139</td>
<td>8.26%</td>
</tr>
<tr>
<td>Trenbolone</td>
<td>132</td>
<td>7.86%</td>
</tr>
<tr>
<td>Nandrolone</td>
<td>125</td>
<td>7.38%</td>
</tr>
<tr>
<td>Boldenone</td>
<td>70</td>
<td>4.11%</td>
</tr>
<tr>
<td>Oxandrolone</td>
<td>61</td>
<td>3.66%</td>
</tr>
<tr>
<td>Oxymetholone</td>
<td>34</td>
<td>2.04%</td>
</tr>
<tr>
<td>Methyltestosterone</td>
<td>18</td>
<td>1.07%</td>
</tr>
<tr>
<td>Mesterolone</td>
<td>14</td>
<td>0.89%</td>
</tr>
<tr>
<td>Fluoxymesterone</td>
<td>10</td>
<td>0.60%</td>
</tr>
<tr>
<td>Desoxymethyltestosterone</td>
<td>9</td>
<td>0.54%</td>
</tr>
<tr>
<td>Other anabolic steroids</td>
<td>68</td>
<td>4.11%</td>
</tr>
</tbody>
</table>

Total Anabolic Steroid Reports | 1,680 | 100.00% |
Total Drug Reports | 770,851|

1 Includes drug reports submitted to laboratories from January 2013 through June 2013 that were analyzed by September 30, 2013.

2 Numbers and percentages may not sum to totals because of rounding.
Table 2.4 PHENETHYLAMINES
Number and percentage of phenethylamine reports in the United States, January 2013–June 2013

<table>
<thead>
<tr>
<th>Phenethylamine Reports</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methamphetamine</td>
<td>100,045</td>
<td>83.95%</td>
</tr>
<tr>
<td>Amphetamine</td>
<td>5,544</td>
<td>4.65%</td>
</tr>
<tr>
<td>Methylene</td>
<td>5,215</td>
<td>4.38%</td>
</tr>
<tr>
<td>MDA</td>
<td>2,423</td>
<td>2.03%</td>
</tr>
<tr>
<td>alpha-PVP</td>
<td>1,202</td>
<td>1.01%</td>
</tr>
<tr>
<td>Lisdexamfetamine</td>
<td>947</td>
<td>0.79%</td>
</tr>
<tr>
<td>MDMA</td>
<td>624</td>
<td>0.52%</td>
</tr>
<tr>
<td>4-MEC</td>
<td>580</td>
<td>0.49%</td>
</tr>
<tr>
<td>2C-I-NBOMe</td>
<td>579</td>
<td>0.49%</td>
</tr>
<tr>
<td>Phentermine</td>
<td>297</td>
<td>0.25%</td>
</tr>
<tr>
<td>Methylone</td>
<td>177</td>
<td>0.15%</td>
</tr>
<tr>
<td>2C-C-NBOMe</td>
<td>162</td>
<td>0.14%</td>
</tr>
<tr>
<td>Pentedrone</td>
<td>125</td>
<td>0.11%</td>
</tr>
<tr>
<td>Ephedrine</td>
<td>68</td>
<td>0.06%</td>
</tr>
<tr>
<td>Other phenethylamines</td>
<td>1,065</td>
<td>0.89%</td>
</tr>
<tr>
<td>Total Phenethylamine Reports</td>
<td>119,167</td>
<td>100.00%</td>
</tr>
<tr>
<td>Total Drug Reports</td>
<td>770,851</td>
<td></td>
</tr>
</tbody>
</table>

MDMA=3,4-Methylenedioxyamphetamine
alpha-PVP=alpha-Pyrrolidinopentiophenone
MDPV=3,4-Methylenediarylsopropylamine
4-MEC=4-Methyl-N-ethylcathinone
2C-I-NBOMe=2-(4-Iodo-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl) ethanamine
MDA=3,4-Methylenedioxymethamphetamine

Table 2.5 SYNTHETIC CANNABINOIDS
Number and percentage of synthetic cannabinoid reports in the United States, January 2013–June 2013

<table>
<thead>
<tr>
<th>Synthetic Cannabinoid Reports</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLR11</td>
<td>11,273</td>
<td>65.38%</td>
</tr>
<tr>
<td>UR-144</td>
<td>1,243</td>
<td>7.21%</td>
</tr>
<tr>
<td>AM-2201</td>
<td>884</td>
<td>5.13%</td>
</tr>
<tr>
<td>PB-22</td>
<td>668</td>
<td>3.87%</td>
</tr>
<tr>
<td>SF-PB-22</td>
<td>544</td>
<td>3.16%</td>
</tr>
<tr>
<td>SF-AKB48</td>
<td>417</td>
<td>2.42%</td>
</tr>
<tr>
<td>AKB48</td>
<td>285</td>
<td>1.65%</td>
</tr>
<tr>
<td>JWH-018 (AM-678)</td>
<td>173</td>
<td>1.00%</td>
</tr>
<tr>
<td>JWH-122</td>
<td>125</td>
<td>0.73%</td>
</tr>
<tr>
<td>JWH-250</td>
<td>118</td>
<td>0.68%</td>
</tr>
<tr>
<td>JWH-210</td>
<td>111</td>
<td>0.64%</td>
</tr>
<tr>
<td>STS-135</td>
<td>84</td>
<td>0.49%</td>
</tr>
<tr>
<td>MAM-2201</td>
<td>64</td>
<td>0.37%</td>
</tr>
<tr>
<td>JWH-081</td>
<td>55</td>
<td>0.32%</td>
</tr>
<tr>
<td>AB-FUBINACA</td>
<td>26</td>
<td>0.15%</td>
</tr>
<tr>
<td>Other</td>
<td>1,172</td>
<td>6.80%</td>
</tr>
<tr>
<td>Total Synthetic Cannabinoid Reports</td>
<td>17,242</td>
<td>100.00%</td>
</tr>
<tr>
<td>Total Drug Reports</td>
<td>770,851</td>
<td></td>
</tr>
</tbody>
</table>

XLR11=[1-(5-Fluoropentyl)-1H-indol-3-yl](2,2,3,3-tetramethylcyclopropyl) methanone
UR-144=1-Pentyl-1H-indol-3-yl](2,2,3,3-tetramethylcyclopropyl)methanone
AM-2201=1-(5-Fluoropentyl)-1H-indol-3-yl](2,2,3,3-tetramethylcyclopropyl)methanone
PB-22=Quinolin-8-yl 1-pentyl-1H-indole-3-carboxylate
SF-PB-22=Quinolin-8-yl 1-(5-fluoropentyl)-1H-indole-3-carboxylate
SF-AKB48=4-(1-Adamantyl)-1-(5-fluoropentyl)-1H-indazole-3-carboxamide
AKB48=N-(1-Adamantyl)-1-Pentyl-1H-indazole-3-carboxamide
JWH-018 (AM678)=(1-Pentyl-3-(1-naphthoyl)indole
JWH-122=1-Pentyl-3-(4-ethyl-1-naphthoxy)indole
JWH-250=1-Pentyl-3-(2-methoxyphenylacetyl)indole

Figure 2.4 Distribution of phenethylamine reports within region, January 2013–June 2013

Figure 2.5 Distribution of synthetic cannabinoid reports within region, January 2013–June 2013

1 Includes drug reports submitted to laboratories from January 2013 through June 2013 that were analyzed by September 30, 2013.
2 Numbers and percentages may not sum to totals because of rounding.
Overview

Since 2001, NFLIS publications have included national and regional estimates for the number of drug reports and drug cases analyzed by State and local forensic laboratories in the United States. This appendix discusses the methods used for producing these estimates, including sample selection, weighting, imputation, and trend analysis procedures. RTI International, under contract to the DEA, began implementing NFLIS in 1997. Results from a 1998 survey (updated in 2002, 2004, 2007, and 2012) provided laboratory-specific information, including annual caseloads, which was used to establish a national sampling frame of all State and local forensic laboratories that routinely perform drug chemistry analyses. A probability proportional to size (PPS) sample was drawn on the basis of annual cases analyzed per laboratory, resulting in a NFLIS national sample of 29 State laboratory systems and 31 local or municipal laboratories, and a total of 168 individual laboratories (see Appendix B for a list of sampled NFLIS laboratories).

Estimates appearing in this publication are based on cases and items submitted to laboratories between January 1, 2013, and June 30, 2013, and analyzed by September 30, 2013. Analysis has shown that approximately 95% of cases submitted during a semiannual period are analyzed within three months of the end of the semiannual period (not including the approximately 30% of cases that are never analyzed).

For each drug item (or exhibit) analyzed by a laboratory in the NFLIS program, up to three drugs can be reported to NFLIS and counted in the estimation process. A drug-specific case is one for which the specific drug was identified as the first, second, or third drug report for any item associated with the case. A drug-specific report is the total number of reports of the specific drug.

Currently, laboratories representing more than 90% of the national drug caseload participate in NFLIS, with about 88% of the national caseload reported for each reporting period. This reporting provided an opportunity to implement a method, referred to as NEAR (National Estimates Based on All Reports), that has strong statistical advantages for producing national and regional estimates.

NEAR Methodology

In NFLIS publications before 2011, data reported by nonsampled laboratories were not used in national or regional estimates. However, as the number of nonsampled laboratories reporting to NFLIS increased, it began to make sense to consider ways to utilize the data they submitted. Under NEAR, the “volunteer” laboratories (i.e., the reporting nonsampled laboratories) represent themselves and are no longer represented by the reporting sampled laboratories. The volunteer laboratories are assigned weights of one, and hence the weights of the sampled and responding laboratories are appropriately adjusted downward. The outcome is that the estimates are more precise, especially for recent years, which include a large number of volunteer laboratories. More precision allows for more power to detect trends and fewer suppressed estimates in Tables 1.1 and 1.2 of the NFLIS annual and midyear reports.

NEAR imputations and adjusting for missing monthly data in reporting laboratories

Because of technical and other reporting issues, some laboratories do not report data for every month during a given reporting period, resulting in missing monthly data. If a laboratory reports fewer than six months of data for the annual estimates (fewer than three months for the semiannual estimates), it is considered nonreporting, and its reported data are not included in the estimates. Otherwise, imputations are performed separately by drug for laboratories that are missing monthly data, using drug-specific proportions generated from laboratories that are reporting all months of data. This imputation method is used for cases, items, and drug-specific reports and accounts for both the typical month-to-month variation and the size of the laboratory requiring imputation. The general idea is to use the nonmissing months to assess the size of the laboratory requiring imputation and then to apply the seasonal pattern exhibited by all laboratories with no missing data. Imputation of monthly case counts are created using the following ratio (r_L):

$$r_L = \frac{\sum_{m \in R_L} c_{L,m}}{\sum_{m \in R_L} c_{m}} ,$$

where

- R_L = set of all nonmissing months in laboratory L,
- $c_{L,m}$ = case count for laboratory L in month m, and
- c_m = mean case counts for all laboratories reporting complete data.

1 The case and item loads for the nonsampled laboratories were used in calculating the weights.
2 In 2012, for example, out of 113 nonsampled laboratories and laboratory systems, 79 (or 70%) reported.
Monthly item counts are imputed for each laboratory using an estimated item-to-case ratio (s_L) for nonmissing monthly item counts within the laboratory. The imputed value for the missing monthly number of items in each laboratory is calculated by multiplying $c_{L,m}$ by s_L:

$$s_L = \frac{\sum_{m \in R_L} i_{L,m}}{\sum_{m \in R_L} c_{L,m}},$$

where

- R_L = set of all nonmissing months in laboratory L,
- $i_{L,m}$ = item count for laboratory L in month m, and
- $c_{L,m}$ = case count for laboratory L in month m.

Drug-specific case and report counts are imputed using the same imputation techniques presented above for the case and item counts. The total drug, item, and case counts are calculated by aggregating the laboratory and laboratory system counts for those with complete reporting and those that require imputation.

NEAR imputations and drug report-level adjustments

Most forensic laboratories classify and report case-level analyses in a consistent manner in terms of the number of vials of a particular pill. A small number, however, do not produce drug report-level counts in the same way as those submitted by the vast majority. Instead, they report as items the count of the individual pills themselves. Laboratories that consider items in this manner also consider drug report-level counts in this same manner. Drug report-to-case ratios for each drug were produced for the similarly sized laboratories, and these drug-specific ratios were then used to adjust the drug report counts for the relevant laboratories.

NEAR weighting procedures

Each NFLIS reporting laboratory was assigned a weight to be used in the calculation of design-consistent, nonresponse-adjusted estimates. Two weights were created: one for estimating cases and one for estimating drug reports. The weight used for case estimation was based on the caseload for every laboratory in the NFLIS population, and the weight used for drug reports’ estimation was based on the item load for every laboratory in the NFLIS population. For reporting laboratories, the caseload and item load used in weighting were the reported totals. For nonreporting laboratories, the caseload and item load used in weighting were obtained from an updated laboratory survey administered in 2013.

When the NFLIS sample was originally drawn, two stratifying variables were used: (1) type of laboratory (State system or municipal or county laboratory) and (2) determination of “certainty” laboratory status. To ensure that the NFLIS sample had strong regional representation, U.S. census regions were used as the geographical divisions to guide the selection of certainty laboratories and systems. Some large laboratories were automatically part of the original NFLIS sample because they were deemed critically important to the calculation of reliable estimates. These laboratories are called “certainty laboratories.” The criteria used in selecting the certainty laboratories included (1) size, (2) region, (3) geographical location, and (4) other special considerations (e.g., strategic importance of the laboratory).

Each weight has two components, the design weight and the nonresponse adjustment factor, the product of which is the final weight used in estimation. After imputation, the final item weight is based on the item count, and the final case weight is based on the case count of each laboratory or laboratory system. The final weights are used to calculate national and regional estimates. The first component, the design weight, is based on the proportion of the caseload and item load of the NFLIS universe represented by the individual laboratory or laboratory system. This step takes advantage of the original PPS sample design and provides precise estimates as long as the drug-specific case and report counts are correlated with the overall caseload and item load.

For noncertainty reporting laboratories in the sample (and reporting laboratories in the certainty strata with nonreporting laboratories), the design-based weight for each laboratory is calculated as follows:

$$\text{Design Weight}_i = \frac{A}{B \times \text{Case [item] Count for Laboratory or Laboratory System } i},$$

where

- i = i^{th} laboratory or laboratory system;
- A = sum of the case (item) counts for all of the laboratories and laboratory systems (sampled and nonsampled) within a specific stratum, excluding certainty strata and the volunteer stratum; and
- B = number of sampled laboratories and laboratory systems within the same stratum, excluding certainty strata and the volunteer stratum.

Certainty laboratories were assigned a design weight of one.5

3 See the Introduction of this publication for a description of the NFLIS universe.
5 With respect to the design weight, reporting laboratories and laboratory systems in certainty strata with nonreporting laboratories and laboratory systems are treated the same way as reporting noncertainty sampled laboratories and laboratory systems. This is done to reduce the variance; otherwise, all reporting laboratories and laboratory systems in these strata would get the same weight regardless of their size.
The second component, the nonresponse adjustment factor, adjusts the weights of the reporting and sampled laboratories to account for the nonreporting and sampled laboratories. The nonresponse (NR) adjustment, for both certainty and noncertainty laboratories, is calculated as follows:

\[NR_j = \frac{C}{D}, \]

where

- \(j \) = stratum;
- \(C \) = number of sampled laboratories and laboratory systems in the stratum, excluding the volunteer stratum; and
- \(D \) = number of laboratories and laboratory systems in the stratum that were both sampled and reporting.

Because volunteer laboratories only represent themselves, they were automatically assigned a final weight of one.

NEAR estimation

The estimates in this publication are the weighted sum of the counts from each laboratory. The weighting procedures make the estimates more precise by assigning large weights to small laboratories and small weights to large laboratories. Because most of the values being estimated tend to be related to laboratory size, the product of the weight and the value to be estimated tend to be relatively stable across laboratories, resulting in precise estimates.

A finite population correction is also applied to account for the high sampling rate. In a sample-based design, the sampling fraction, which is used to create the weights, equals the number of sampled laboratories divided by the number of laboratories in the NFLIS universe. Under NEAR, the sampling fraction equals the number of sampled laboratories divided by the sum of the number of sampled laboratories and the number of nonreporting, unsampled laboratories. Volunteer laboratories are not included in the sampling fraction calculation. Thus, the NEAR approach makes the sampling rate even higher because volunteer laboratories do not count as nonsampled laboratories.

Suppression of Unreliable Estimates

For some drugs, such as cannabis/THC and cocaine, thousands of reports occur annually, allowing for reliable national prevalence estimates to be computed. For other drugs, reliable and precise estimates cannot be computed because of a combination of low report counts and substantial variability in report counts between laboratories. Thus, a suppression rule was established. Precision and reliability of estimates are evaluated using the relative standard error (RSE), which is the ratio between the standard error of an estimate and the estimate. Drug estimates with an RSE > 50% are suppressed and not shown in the tables.

Statistical Techniques for Trend Analysis

Two types of analyses to compare estimates across years were used. The first is called **prior-year comparisons** and compared national and regional estimates from January 2012 through June 2012 with those from January 2013 through June 2013. The second is called **long-term trends** and examined trends in the annual national and regional estimates from January 2001 through June 2013. The long-term trends method described below was implemented beginning with the 2012 Midyear Report. The new method offers the ability to identify both linear and curved trends, unlike the method used in previous NFLIS publications. Both types of trend analyses are described below. For the region-level prior-year comparisons and long-term trends, the estimated drug reports were standardized to the most recent regional population totals for persons aged 15 years or older.

Prior-year comparisons

For selected drugs, the prior-year comparisons statistically compared estimates in Table 1.1 of this publication with estimates in Table 1.1 of the 2012 Midyear Report. The specific test examined whether the difference between any two estimates was significantly different from zero. A standard \(t \)-test was completed using the statistic,

\[
\hat{t}_{df} = \frac{a\hat{T}_{2013} - b\hat{T}_{2012}}{\sqrt{a^2 \text{var}(\hat{T}_{2013}) + b^2 \text{var}(\hat{T}_{2012}) - 2ab \text{cov}(\hat{T}_{2012}, \hat{T}_{2013})}},
\]

where

- \(df \) = appropriate degrees of freedom (number of laboratories minus number of strata);
- \(\hat{T}_{2013} \) = estimated total number of reports for the given drug for January 2013 through June 2013;
- \(\hat{T}_{2012} \) = estimated total number of reports for the given drug for January 2012 through June 2012;
- \(\text{var}(\hat{T}_{2013}) \) = variance of \(\hat{T}_{2013} \);
- \(\text{var}(\hat{T}_{2012}) \) = variance of \(\hat{T}_{2012} \); and
- \(\text{cov}(\hat{T}_{2012}, \hat{T}_{2013}) \) = covariance between \(\hat{T}_{2012} \) and \(\hat{T}_{2013} \).

For the national prior-year comparisons, \(a = b = 1 \). For the regional prior-year comparisons, \(a = 100,000 \) divided by the regional population total for 2013, and \(b = 100,000 \) divided by the regional population total for 2012.

The percentile of the test statistic in the \(t \) distribution determined whether the prior-year comparison was statistically significant (a two-tailed test at \(\alpha = .05 \)).

6 See footnote 4.
Long-term trends

A long-term regression trends analysis was performed on the January 2001 through June 2013 semiannual national estimates of totals and regional estimates of rates for selected drug reports. The models allow for randomness in the totals and rates due to both the sample and the population. That is, for the vector of time period totals over that time,

$$\mathbf{Y}^T = (Y_1, Y_2, \ldots, Y_{25}),$$

and for the estimates,

$$\hat{\mathbf{Y}}^T = (\hat{Y}_1, \hat{Y}_2, \ldots, \hat{Y}_{25}),$$

the regression model is

$$\hat{\mathbf{Y}} = \mathbf{X}\beta + \eta + \epsilon,$$

where

$$\eta = \hat{\mathbf{Y}} - \mathbf{Y}$$ is a 25×1 vector of errors due to the probability sample, and

$$\epsilon$$ is a 25×1 vector of errors due to the underlying model.

Randomness due to the sample exists because only a sample of all eligible laboratories has been randomly selected to be included. Randomness due to the population exists because many factors that can be viewed as random contribute to the specific total reported by a laboratory in a time period. For example, not all drug seizures that could have been made were actually made, and there may have been some reporting errors. If rates (per 100,000 persons aged 15 years or older) and not totals are of interest, the above model can be applied to

$$c\hat{\mathbf{Y}} = \hat{\mathbf{Y}},$$

where c equals 100,000 divided by the 15-or-older regional population size as given by the U.S. Census Bureau.

The regression model used to perform the analysis is

$$Y_i = \alpha_0 + \alpha_1 t + \alpha_2 t^2 + \alpha_3 t^3 + \epsilon_i, \quad t = 1, \ldots, T,$$

where

Y_i is the population total value, considered to be a realization of the underlying model; and

ϵ_i is one of a set of 25 independent normal variates with a mean of zero and a variance of σ^2.

The model allows for a variety of trend types: linear (straight-line), quadratic (U-shaped), and cubic (S-shaped). Because it is a model for Y_i but the sample estimates \hat{Y}_i differ by the sampling error, estimation was performed by restricted maximum likelihood (REML), allowing for the two sources of error.

To implement the regression model, point estimates of totals \hat{Y}_i and their standard errors were obtained for all 25 semiannual periods beginning with January to June 2001 period and ending with January to June 2013 period. Sampling standard errors were estimated as the full sampling variance-covariance matrix \mathbf{S} over these 25 time periods. The \mathbf{S} matrix contains variances in totals at any time period and covariances in totals between any two time periods, thus giving a very general modeling of the sampling variance structure. The variance-covariance matrix of the totals is then

$$\mathbf{V}[\hat{\mathbf{Y}}] = \sigma^2 \mathbf{I} + \mathbf{S},$$

where \mathbf{I} is the identity matrix.

Regression coefficients were estimated using the REML method. Because higher order polynomial regression models generally show strong collinearity among predictor variables, the model was reparameterized using orthogonal polynomials. The reparameterized model is

$$Y_i = \beta_0 X_0(t) + \beta_1 X_1(t) + \beta_2 X_2(t) + \beta_3 X_3(t) + \epsilon_i,$$

where

$$X_0(t) = 1/\sqrt{T}$$ for all $t,$ and

$$X_1(t), X_2(t), X_3(t)$$ provide contributions for the first-order (linear), second-order (quadratic), and third-order (cubic) polynomials, respectively.

Note that the error term is the same in both the original model and the reparameterized model because the fitted surface is the same for both models. The model was further constrained to have regression residuals sum to zero, a constraint that is not guaranteed by theory for these models, but was considered to improve model fit due to an approximation required to estimate $\mathbf{S}.$ Standard errors of the regression trend estimates were obtained by simulation.

Final models were selected after testing for the significance of coefficients at the $\alpha = 0.05$ level ($p < .05$), which means that if the trend of interest (linear, quadratic, cubic) were in fact zero, then there would be a 5% chance that the trend would be detected as statistically significant when in fact it is not. Final fitted models are most easily interpreted using graphical plots.
This list identifies laboratories that are participating in and reporting to NFLIS as of January 31, 2014.

*This laboratory is not currently conducting drug chemistry analysis. Cases for the agencies they serve are being analyzed via contracts or agreements with other laboratories.

**The New York City Police Department Crime Laboratory currently reports summary data.
Appendix C

NFLIS BENEFITS AND LIMITATIONS

Benefits

The systematic collection and analysis of drug analysis data aid our understanding of the Nation’s illicit drug problem. NFLIS serves as a resource for supporting drug scheduling policy and drug enforcement initiatives both nationally and in specific communities around the country.

Specifically, NFLIS helps the drug control community achieve its mission by

■ providing detailed information on the prevalence and types of controlled substances secured in law enforcement operations;

■ identifying variations in controlled and noncontrolled substances at the national, State, and local levels;

■ identifying emerging drug problems and changes in drug availability in a timely fashion;

■ monitoring the diversion of legitimately marketed drugs into illicit channels;

■ providing information on the characteristics of drugs, including quantity, purity, and drug combinations; and

■ supplementing information from other drug sources, including the DEA’s STRIDE, the National Survey on Drug Use and Health (NSDUH), and the Monitoring the Future (MTF) study.

NFLIS is an opportunity for State and local laboratories to participate in a useful, high-visibility initiative. Participating laboratories regularly receive reports that summarize national and regional data. In addition, the Data Query System (DQS) is a secure website that allows NFLIS participants—including State and local laboratories, the DEA, and other Federal drug control agencies—to run customized queries on the NFLIS data. Enhancements to the DQS provide a new interagency exchange forum that will allow the DEA, forensic laboratories, and other members of the drug control community to post and respond to current information.

Limitations

NFLIS has limitations that must be considered when interpreting findings generated from the database.

■ Currently, NFLIS includes data from Federal, State, and local forensic laboratories. Federal data are shown separately in this publication. Efforts are under way to enroll additional Federal laboratories.

■ NFLIS includes drug chemistry results from completed analyses only. Drug evidence secured by law enforcement but not analyzed by laboratories is not included in the database.

■ National and regional estimates may be subject to variation associated with sample estimates, including nonresponse bias.

■ State and local policies related to the enforcement and prosecution of specific drugs may affect drug evidence submissions to laboratories for analysis.

■ Laboratory policies and procedures for handling drug evidence vary. Some laboratories analyze all evidence submitted to them, while others analyze only selected case items. Many laboratories do not analyze drug evidence if the criminal case was dismissed from court or if no defendant could be linked to the case.

■ Laboratories vary with respect to the records they maintain. For example, some laboratories’ automated records include the weight of the sample selected for analysis (e.g., the weight of one of five bags of powder), while others record total weight.
PUBLIC DOMAIN NOTICE

All material appearing in this publication is in the public domain and may be reproduced or copied without permission from the DEA. However, this publication may not be reproduced or distributed for a fee without the specific, written authorization of the U.S. Drug Enforcement Administration, U.S. Department of Justice. Citation of the source is appreciated. Suggested citation:

OBTAINING COPIES OF THIS PUBLICATION

Electronic copies of this publication can be downloaded from the NFLIS website at https://www.nflis.deadiversion.usdoj.gov.

U.S. Drug Enforcement Administration
Office of Diversion Control
8701 Morrissette Drive
Springfield, VA 22152

March 2014