Addiction Physiology:

Basic Physiology and Clinical Implications

David Yanga, M.D.

June 14th, 2019
Chief Medical Officer
- Ascension Brighton Center for Recovery

American Board of Addiction Medicine Foundation
- Lifetime Learning and Self-Assessment Committee Member

I do not have any relevant financial relationships with any commercial interests or any other conflicts of interest to disclose
Key Objectives

• Understanding how addiction as a disease modulates the brain
• Understanding what chronic opioid therapy does to change the physiology of the body
• Understanding the concept of how multiple drug types can interact to cause unintentional overdose
Addiction Brain Region Effects

[Diagram of the brain with labeled regions: Prefrontal cortex, Frontal cortex, Nucleus accumbens, Medial forebrain bundle, Ventral tegmental area, Amygdala, Planning, judgement, Reward, Emotions, conditioned effects]

Addiction is a primary, chronic disease of brain reward, motivation, memory and related circuitry. Dysfunction in these circuits leads to characteristic biological, psychological, social and spiritual manifestations. This is reflected in an individual pathologically pursuing reward and/or relief by substance use and other behaviors.
Addiction Definition

• Addiction is characterized by inability to consistently abstain, impairment in behavioral control, craving, diminished recognition of significant problems with one’s behaviors and interpersonal relationships, and a dysfunctional emotional response. Like other chronic diseases, addiction often involves cycles of relapse and remission. Without treatment or engagement in recovery activities, addiction is progressive and can result in disability or premature death.

https://www.asam.org/resources/definition-of-addiction
Disease Progression

![Graph showing disease progression with axes labeled Intensity and Substance-use disorder. The graph includes lines for Motivation, Negative reinforcement, Positive reinforcement.](image-url)
The Addiction Cycle

Binge/Intoxication Stage

- Main Issue
 - Incentive Salience
- Brain Region
 - Basal Ganglia
- Base Modulators
 - Dopamine
 - Opioid Peptides

Withdrawal / Negative Affect Stage

• Main Issue
 – Reward Deficit and Stress Surfeit

• Brain Region
 – Extended Amygdala

• Base Modulators
 – Norepinephrine
 – CRF
 – Dynorphins

https://www.narconon.org/blog/drug-addiction/withdrawal-symptoms/
Preoccupation / Anticipation Stage

• Main Issue
 – Executive Function

• Brain Region
 – Prefrontal Cortex

• Base Modulators
 – Glutamate
 – GABA

https://www.pbinstitute.com/blog/phenomenon-craving/
The Addiction Cycle

Chronic Brain Alterations

The brain with abstinence and time will heal . . .

https://www.drugabuse.gov/publications/methamphetamine/what-are-long-term-effects-methamphetamine-misuse
Addiction is a chronic disease that affects multiple parts of the brain. There is a cycle that includes 3 stages: Binge/Intoxication, Negative Affect/Withdrawal, Preoccupation/Anticipation. The brain is plastic and has the capacity to heal with abstinence.
Opioid Receptor Physiology

- MOR: euphoria, stress-coping
- KOR: dysphoria, stress, negative affect
- DOR: anxiolytic, positive affect

Pharmacology, Genetic Models

Mood

What Do Opioids Do?

• Neurological Alterations
 – Mu receptors – downregulation and desensitization2
 • Tolerance
 • As doses increase, mu receptor density decreases
 – Nucleus accumbens – dopamine modulation3
 • Euphoric effects and craving
 • Dopamine alters regions for decision making
Two normally functioning neurons (1 and 2). Binding potential of 100 percent with 12 receptors.

There is a reduction of receptors for both neuron 1 and 2. This is an example of receptor down-regulation of 50 percent with 6 receptors.
TOLERANCE
There is a reduction of receptors for both neuron 1 and 2. This is an example of receptor down-regulation of 50 percent with 6 receptors.

NEUROTOXICITY
Neuron 1 remains unchanged, and postsynaptic neuron 2 is dead. Binding potential is 50 percent with 6 receptors.
What Do Opioids Do?

• Neurological Alterations
 – Locus coeruleus – norepinephrine modulation\(^3\)
 • Physiological withdrawal symptoms
 • May contribute to anxiety and insomnia in dependence
 – Spinothalamic Tracts – emotional dysregulation\(^4\)
Endocrine effects

– Opioid Induced Androgen Deficiency (OPIAD)\(^5\)
 • Reduction of testosterone via the HPG pathway; the HPA is also altered
 • Irregular menses, hypogonadism, reduced sexual function, osteopenia/osteoporosis, etc.

– Associated with Lower Vitamin D Levels\(^6\)
 • May increase inflammation and pain levels
 • May increase mood disorders
What Do Opioids Do?

- Gastrointestinal Effects
 - Opioid-Induced Constipation
 - Opioid-Induced Microbiota Effects
- Pain Modulating Effects
 - Opioid Hyperalgesia
 - Most likely related to the NMDA receptor system and the effects of glutamate
 - Spinal dynorphins may also be implicated
Mu Opioid Receptors

http://mcveighmcblog.blogspot.com/2012/04/rx-drug-abuse.html
Chronic Opioid Effects

- Overstimulation
 - Insomnia and anxiety symptoms
- Emotional dysregulation
 - Emotional lability
 - Catastrophizing
- Hormonal dysregulation
 - Hot flashes, sweats, emotional dysregulation
 - Osteopenia/osteoporosis, low vitamin D status
- Pain dysregulation and hyperalgesia
Opioid Physiology Section Review

• Opioids as a class effect multiple body systems including:
 – Brain physiology
 – Hormone physiology
 – Gastrointestinal/biome physiology
 – Pain physiology

• Opioids would be better thought of as a multi-target drug with profound long-term consequences with chronic use
Clinical Ramifications

https://sacredcowonaspit.net/medical-thinking/
3 Waves of the Rise in Opioid Overdose Deaths

- Wave 1: Rise in Prescription Opioid Overdose Deaths
- Wave 2: Rise in Heroin Overdose Deaths
- Wave 3: Rise in Synthetic Opioid Overdose Deaths

Other Synthetic Opioids
- e.g., Tramadol and Fentanyl, prescribed or illicitly manufactured

Commonly Prescribed Opioids
- Natural & Semi Synthetic Opioids and Methadone

Heroin
Opioid Dose & Overdose

Overstimulation
 – Insomnia and anxiety symptoms
Emotional dysregulation
 – Emotional lability
 – Catastrophizing
Hormonal dysregulation
 – Hot flashes, sweats, emotional dysregulation
 – Osteopenia/osteoporosis, low vitamin D status
Pain dysregulation and hyperalgesia
If these are present, it may be related to the dose and ongoing use of the opioid medication itself!
Smoking Status

- Daily Smoker (30 days per month)
 - 5 times greater risk for opioid abuse / opioid dependence compared to non-smokers
 - 3 times greater risk for opioid misuse compared to non-smokers
- Intermittent smoker (4-27 days per month)
 - 3 times greater risk for opioid abuse / opioid dependence compared to non-smokers
 - 3 times greater risk for opioid misuse compared to non-smokers
• Using sedative medication with opioid medication is clearly dangerous

• Use of benzodiazepines increases the adjusted hazard ratio of opioid overdose death by 6.4 times10

• Use of benzodiazepines and skeletal muscle relaxers increases the adjusted hazard ratio of opioid overdose death by 12.6 times10

• Do not ignore the MAPS overdose risk score
Opioids and Sedatives

Opioid Overdose Deaths Involving Benzodiazepines

Source: Centers for Disease Control and Prevention (CDC). Multiple Cause of Death, 1999-2015.
Opioids and Sedatives

Opioid Involvement in Benzodiazepine Overdose

- Deaths Involving Benzodiazepines
- Benzodiazepine in Combination with Any Opioid
- Benzodiazepine Only

Source: National Center for Health Statistics, CDC Wonder
Buprenorphine with Benzos

• Overstimulation
 – Upregulated dopamine and norepinephrine
 – Causes insomnia and anxiety
• If these are present, it may be related to the dose and ongoing use of the opioid medication itself!
• These symptoms should prompt the clinician to decrease the dose of the opioid through tapering
• Do not use benzodiazepine, z-class sedatives or pregabalin/gabapentin for management of these symptoms or overdose risks rise rapidly
• An Australian Cognition Study (2012) studied the differences between maintenance patients (methadone and buprenorphine), abstinent opioid use disorder patients in a therapeutic community, and non-opioid users from the community (controls) in 5 main domains of cognitive function
• N = 225 (large for a neurocognitive study)
• Single testing point of 120 minutes with batteries of testing
Cognition with OST

• Maintenance patients (methadone and buprenorphine) scored lower than abstinent patients and controls in the following domains:
 – Executive function
 – Information processing
 – Immediate and delayed logical memory (controls only)
 – Immediate recall
• Overall, the maintenance patients were worse than controls in 6/13 tests and worse than abstinence patients in 5/13 tests
• This has implications for what therapeutic interventions will work
• Also has implications for drop out rates and non-adherence
Clinical Section Review

- Opioids as a class, create many symptoms that need treatment (anxiety, insomnia, etc.)
- Reducing opioids should be first goal if there are unacceptable side effects of therapy
- Sedatives are particularly dangerous to use in combination with opioids
- Chronic use of any opioid has long-term opioid related physiological consequences
Conclusions

- Addiction physiology changes follow a 3 cycle pattern which repeats itself with increasing severity.
- Chronic opioid therapy has profound impacts on multiple body systems over time.
- Combining opioids with sedatives is very dangerous.
- The addicted brain heals with abstinence through extended time.
References

3: ASAM Pain and Addiction Common Threads XIX Course, San Diego, Corey Waller, M.D, 2018, April

Questions?